Optimal quadrature problem on Hardy-Sobolev classes

نویسندگان

  • Gensun Fang
  • Xuehua Li
چکیده

Let H̃r ∞,β denote those 2π-periodic, real-valued functions f on R, which are analytic in the strip Sβ := {z ∈ C : |Im z| < β}, β > 0 and satisfy the restriction |f (r)(z)| ≤ 1, z ∈ Sβ . Denote by [x] the integral part of x. We prove that the rectangular formula QN (f) = 2π N N−1 ∑

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimates in the Hardy-sobolev Space of the Annulus and Stability Result

The main purpose of this work is to establish some logarithmic estimates of optimal type in the Hardy-Sobolev space Hk,∞; k ∈ N∗ of an annular domain. These results are considered as a continuation of a previous study in the setting of the unit disk by L.Baratchart and M. Zerner, On the recovery of functions from pointwise boundary values in a Hardy-Sobolev class of the disk, J. Comput. Appl. M...

متن کامل

Optimal Quadrature Formulas with Derivative in the Space

Abstract This paper studies the problem of construction of optimal quadrature formulas in the sense of Sard in the space ( ) 2 (0,1) m L . In this paper the quadrature sum consists of values of the integrand and its first derivative at nodes. The coefficients of optimal quadrature formulas are found and the norm of the optimal error functional is calculated for arbitrary natural number 1 N m ≥ ...

متن کامل

Optimal Quadrature Formulas for the Cauchy Type Singular Integral in the Sobolev Space

Abstract This paper studies the problem of construction of the optimal quadrature formula in the sense of Sard in (2) 2 ( 1,1) L − S.L.Sobolev space for approximate calculation of the Cauchy type singular integral. Using the discrete analogue of the operator 4 4 / d dx we obtain new optimal quadrature formulas. Furthermore, explicit formulas of the optimal coefficients are obtained. Finally, in...

متن کامل

A Quadrature Finite Element Galerkin Scheme for a Biharmonic Problem on a Rectangular Polygon

A quadrature Galerkin scheme with the Bogner–Fox–Schmit element for a biharmonic problem on a rectangular polygon is analyzed for existence, uniqueness, and convergence of the discrete solution. It is known that a product Gaussian quadrature with at least three-points is required to guarantee optimal order convergence in Sobolev norms. In this article, optimal order error estimates are proved f...

متن کامل

Optimal Sobolev Embeddings on R

The aim of this paper is to study Sobolev-type embeddings and their optimality. We work in the frame of rearrangement-invariant norms and unbounded domains. We establish the equivalence of a Sobolev embedding to the boundedness of a certain Hardy operator on some cone of positive functions. This Hardy operator is then used to provide optimal domain and range rearrangement-invariant norm in the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Complexity

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2005